2022

Liens vers les publications Argo International   

Liste des publications utilisant des données Argo dont au moins un auteur est affilié à un laboratoire de recherche français :

2022

  1. Barbieux, M., et al. (2022), Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo profiling floats, Biogeosciences19(4), 1165-1194, doi: https://doi.org/10.5194/bg-19-1165-2022
  2. Bennani, Y., A. Ayouche, and X. Carton (2022), 3D Structure of the Ras Al Hadd Oceanic Dipole, Oceans3(3), 268-288, doi: https://doi.org/10.3390/oceans3030019
  3. Bock, N., M. Cornec, H. Claustre, and S. Duhamel (2022), Biogeographical Classification of the Global Ocean From BGC-Argo Floats, Glob. Biogeochem. Cycle36(6), e2021GB007233, doi: https://doi.org/10.1029/2021GB007233
  4. Bonelli, A. G., H. Loisel, D. S. F. Jorge, A. Mangin, O. F. d’Andon, and V. Vantrepotte (2022), A new method to estimate the dissolved organic carbon concentration from remote sensing in the global open ocean, Remote Sens. Environ.281, 113227, doi: https://doi.org/10.1016/j.rse.2022.113227
  5. Boutin, J., N. Reul, J. Koehler, A. Martin, R. Catany, S. Guimbard, F. Rouffi, et al. (2021), Satellite-Based Sea Surface Salinity Designed for Ocean and Climate Studies, Journal of Geophysical Research: Oceans, 126(11), e2021JC017676, doi:https://doi.org/10.1029/2021JC017676
  6. Bruyant, F., et al. (2022), The Green Edge cruise: investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom, Earth Syst. Sci. Data14(10), 4607-4642, doi: https://doi.org/10.5194/essd-14-4607-2022
  7. Capet, A., G. Taburet, E. Mason, M. I. Pujol, M. Grégoire, and M.-H. Rio (2022), Using Argo Floats to Characterize Altimetry Products: A Study of Eddy-Induced Subsurface Oxygen Anomalies in the Black Sea, Frontiers in Marine Science9, doi: https://doi.org/10.3389/fmars.2022.875653
  8. Chen, J., A. Cazenave, C. Dahle, W. Llovel, I. Panet, J. Pfeffer, and L. Moreira (2022), Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry, Surveys in Geophysics43(1), 305-345, doi: https://doi.org/10.1007/s10712-021-09685-x
  9. Chen, Y., S. Speich, and R. Laxenaire (2022), Formation and Transport of the South Atlantic Subtropical Mode Water in Eddy-Permitting Observations, Journal of Geophysical Research: Oceans127(1), e2021JC017767, doi: https://doi.org/10.1029/2021JC017767
  10. Chenal, J., B. Meyssignac, A. Ribes, and R. Guillaume-Castel (2022), Observational Constraint on the Climate Sensitivity to Atmospheric CO2 Concentrations Changes Derived from the 1971–2017 Global Energy Budget, J. Clim.35(14), 4469-4483, doi: https://doi.org/10.1175/JCLI-D-21-0565.1
  11. Cheng, L., et al. (2022), Past and future ocean warming, Nature Reviews Earth & Environment, doi: https://doi.org/10.1038/s43017-022-00345-1
  12. Desbruyères, D. G., E. P. Bravo, V. Thierry, H. Mercier, P. Lherminier, C. Cabanes, T. C. Biló, N. Fried, and M. Femke De Jong (2022), Warming-to-Cooling Reversal of Overflow-Derived Water Masses in the Irminger Sea During 2002–2021, Geophys. Res. Lett.49(10), e2022GL098057, doi: https://doi.org/10.1029/2022GL098057
  13. Feucher, C., E. Portela, N. Kolodziejczyk, and Thierry, V.: Recent Irminger Sea oxygenation explained by subpolar gyre decadal variability. Communication Earth and Environmenthttps://doi.org/10.1038/s43247-022-00570-y
  14. Fourrier, M., L. Coppola, F. D’Ortenzio, C. Migon, and J.-P. Gattuso (2022), Impact of Intermittent Convection in the Northwestern Mediterranean Sea on Oxygen Content, Nutrients, and the Carbonate System, Journal of Geophysical Research: Oceans127(9), e2022JC018615, doi: https://doi.org/10.1029/2022JC018615
  15. Galí, M., M. Falls, H. Claustre, O. Aumont, and R. Bernardello (2022), Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean, Biogeosciences19(4), 1245-1275, doi: https://doi.org/10.5194/bg-19-1245-2022
  16. Grodsky, S. A., N. Reul, A. Bentamy, and D. Vandemark (2022), Eastward propagating surface salinity anomalies in the tropical North Atlantic, Remote Sensing Letters13(4), 334-342, doi: https://doi.org/10.1080/2150704X.2022.2032452
  17. Ioannou, A., S. Speich, and R. Laxenaire (2022), Characterizing Mesoscale Eddies of Eastern Upwelling Origins in the Atlantic Ocean and Their Role in Offshore Transport, Frontiers in Marine Science9, doi: https://doi.org/10.3389/fmars.2022.835260
  18. Johnson, G. C., S. Hosoda, S. R. Jayne, P. R. Oke, S. C. Riser, D. Roemmich, T. Suga, V. Thierry, S. E. Wijffels, and J. Xu (2022), Argo—Two Decades: Global Oceanography, Revolutionized, Annual Review of Marine Science14(1), 379-403, doi: https://doi.org/10.1146/annurev-marine-022521-102008
  19. Li, K., G. Maze, and H. Mercier (2022), Ekman Transport as the Driver of Extreme Interannual Formation Rates of Eighteen Degree Water, Journal of Geophysical Research: Oceans127(1), e2021JC017696, doi: https://doi.org/10.1029/2021JC017696
  20. Liu, Y., D. G. Desbruyères, H. Mercier, and M. A. Spall (2022), Observation-Based Estimates of Eulerian-Mean Boundary Downwelling in the Western Subpolar North Atlantic, Geophys. Res. Lett.49(8), e2021GL097243, doi: https://doi.org/10.1029/2021GL097243
  21. Llovel W., N. Kolodziejczyk, S. Close, T. Penduff, J.-M. Molines and L. Terray, Imprint of intrinsic ocean variability on decadal trends of regional sea level and ocean heat content using synthetic profiles, Environ. Res. Lett. 17 044063. https://doi.org/10.1088/1748-9326/ac5f93
  22. Manta, G., S. Speich, M. Barreiro, R. Trinchin, C. de Mello, R. Laxenaire, and A. R. Piola (2022), Shelf Water Export at the Brazil-Malvinas Confluence Evidenced From Combined in situ and Satellite Observations, Frontiers in Marine Science9, doi: https://doi.org/10.3389/fmars.2022.857594
  23. Marti,F., Blazquez A, Meyssignac B, Ablain M, Barnoud A, Fraudeau R, Jugier R, Chenal J, Larnicol G, Pfeffer J,  Restano M, and Benveniste J. (2022), Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry, Earth Syst. Sci. Data14(1), 229-249, doi: https://doi.org/10.5194/essd-14-229-2022
  24. Metzl, N., C. Lo Monaco, C. Leseurre, C. Ridame, J. Fin, C. Mignon, M. Gehlen, and T. T. T. Chau (2022), The impact of the South-East Madagascar Bloom on the oceanic CO2 sink, Biogeosciences19(5), 1451-1468, doi: https://doi.org/10.5194/bg-19-1451-2022
  25. Meuriot, O., C. Lique, and Y. Plancherel (2022), Properties, sensitivity, and stability of the Southern Hemisphere salinity minimum layer in the UKESM1 model, Climate Dynamics, doi: https://doi.org/10.1007/s00382-022-06304-2
  26. Mignot, A., K. von Schuckmann, P. Landschützer, F. Gasparin, S. van Gennip, C. Perruche, J. Lamouroux, and T. Amm (2022), Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves, Nature Communications13(1), 4300, doi: https://doi.org/10.1038/s41467-022-31983-0
  27. Moschos, E., A. Barboni, and A. Stegner (2022), Why Do Inverse Eddy Surface Temperature Anomalies Emerge? The Case of the Mediterranean Sea, Remote Sensing14(15), 3807, doi: https://doi.org/10.3390/rs14153807
  28. Napolitano, D. C., G. Alory, I. Dadou, Y. Morel, J. Jouanno, and G. Morvan (2022), Influence of the Gulf of Guinea Islands on the Atlantic Equatorial Undercurrent Circulation, Journal of Geophysical Research: Oceans127(9), e2021JC017999, doi: https://doi.org/10.1029/2021JC017999
  29. Pauthenet, E., L. Bachelot, K. Balem, G. Maze, A. M. Tréguier, F. Roquet, R. Fablet, and P. Tandeo (2022), Four-dimensional temperature, salinity and mixed-layer depth in the Gulf Stream, reconstructed from remote-sensing and in situ observations with neural networks, Ocean Sci.18(4), 1221-1244, doi: https://doi.org/10.5194/os-18-1221-2022
  30. Petit, F., J. Uitz, C. Schmechtig, C. Dimier, J. Ras, A. Poteau, M. Golbol, V. Vellucci, and H. Claustre (2022), Influence of the phytoplankton community composition on the in situ fluorescence signal: Implication for an improved estimation of the chlorophyll-a concentration from BioGeoChemical-Argo profiling floats, Frontiers in Marine Science9, doi: https://doi.org/10.3389/fmars.2022.959131
  31. Petit, T., V. Thierry, and H. Mercier (2022), Deep through-flow in the Bight Fracture Zone, Ocean Sci.18(4), 1055-1071, doi: https://doi.org/10.5194/os-18-1055-2022
  32. Picheral, M., C. Catalano, D. Brousseau, H. Claustre, L. Coppola, E. Leymarie, J. Coindat, F. Dias, S. Fevre, L. Guidi, J.-O. Irisson, L. Legendre, F. Lombard, L. Mortier, C. Penkerch, A. Rogge, C.Schmechtig, S. Thibault, T.  Tixier, A. Waite, L. Stemmann (2022), The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms, Limnology and Oceanography: Methods20(2), 115-129, doi: https://doi.org/10.1002/lom3.10475
  33. Portela, E., Rintoul, S. R., Herraiz-Borreguero, L., Roquet, F., Bestley, S., van Wijk, E., et al. (2022). Controls on dense shelf water formation in four East Antarctic polynyas. Journal of Geophysical Research: Oceans, 127, e2022JC018804, doi: https://doi.org/10.1029/2022JC018804.
  34. Pinault, J.-L. (2022), A Review of the Role of the Oceanic Rossby Waves in Climate Variability, Journal of Marine Science and Engineering10(4), 493, doi: https://doi.org/10.3390/jmse10040493
  35. Ringler, A. T., et al. (2022), Achievements and Prospects of Global Broadband Seismographic Networks After 30 Years of Continuous Geophysical Observations, Reviews of Geophysics60(3), e2021RG000749, doi: https://doi.org/10.1029/2021RG000749
  36. Roemmich, D., W. S. Wilson, W. J. Gould, W. B. Owens, P.-Y. Le Traon, H. J. Freeland, B. A. King, S. Wijffels, P. J. H. Sutton, and N. Zilberman (2022), Chapter 4 – The Argo Program, in Partnerships in Marine Research, edited by G. Auad and F. K. Wiese, pp. 53-69, Elsevier, BGCArgo, DeepArgo, doi: https://doi.org/10.1016/B978-0-323-90427-8.00004-6
  37. Savita, A., et al. (2022), Quantifying Spread in Spatiotemporal Changes of Upper-Ocean Heat Content Estimates: An Internationally Coordinated Comparison, J. Clim.35(2), 851-875, doi: https://doi.org/10.1175/JCLI-D-20-0603.1
  38. Schaap, D. M. A., A. Novellino, M. Fichaut, and G. M. R. Manzella (2022), Chapter Three – Data management infrastructures and their practices in Europe, in Ocean Science Data, edited by G. Manzella and A. Novellino, pp. 131-193, Elsevier, doi: https://doi.org/10.1016/B978-0-12-823427-3.00007-4
  39. Sévellec, F., A. C. d. Verdière, and N. Kolodziejczyk (2022), Estimation of Horizontal Turbulent Diffusivity from Deep Argo Float Displacements, J. Phys. Oceanogr.52(7), 1509-1529, doi: https://doi.org/10.1175/JPO-D-21-0150.1
  40. Taillandier, V., F. D’Ortenzio, L. Prieur, P. Conan, L. Coppola, M. Cornec, F. Dumas, X. Durrieu de Madron, B. Fach, M. Fourrier, M. Gentil, D. Hayes, S. Husrevoglu, H. Legoff, L. Le Ster, H. Örek, T. Ozer, P. M. Poulain, M. Pujo-Pay, M. Ribera d’Alcalà, B. Salihoglu, P. Testor, D. Velaoras, T. Wagener, C. Wimart-Rousseau (2022), Sources of the Levantine Intermediate Water in Winter 2019, Journal of Geophysical Research: Oceans127(6), e2021JC017506, doi: https://doi.org/10.1029/2021JC017506
  41. Tedesco, P., J. Gula, P. Penven, and C. Ménesguen (2022), Mesoscale Eddy Kinetic Energy Budgets and Transfers between Vertical Modes in the Agulhas Current, J. Phys. Oceanogr.52(4), 677-704, doi: https://doi.org/10.1175/JPO-D-21-0110.1
  42. Thouvenin-Masson, C., J. Boutin, J.-L. Vergely, G. Reverdin, A. C. H. Martin, S. Guimbard, N. Reul, R. Sabia, R. Catany, and O. Hembise Fanton-d’Andon (2022), Satellite and In Situ Sampling Mismatches: Consequences for the Estimation of Satellite Sea Surface Salinity Uncertainties, Remote Sensing14(8), 1878, doi: https://doi.org/10.3390/rs14081878
  43. Tilliette, C., et al. (2022), Dissolved Iron Patterns Impacted by Shallow Hydrothermal Sources Along a Transect Through the Tonga-Kermadec Arc, Glob. Biogeochem. Cycle36(7), e2022GB007363, doi: https://doi.org/10.1029/2022GB007363
  44. von Schuckman, K., and P.-Y. LeTraon (2022), Copernicus Ocean State Report, issue 6, J. Oper. Oceanogr.15(sup1), 1-220, doi: https://doi.org/10.1080/1755876X.2022.2095169.